Stage-specific expression of c-kit protein by murine hematopoietic progenitors.
نویسندگان
چکیده
We have analyzed c-kit expression by hematopoietic progenitors from normal and 5-fluorouracil (5-FU)-treated mice by staining with monoclonal anti-c-kit antibody ACK-4. Marrow cells that were enriched for progenitors by a combination of metrizamide density separation and negative immunomagnetic selection with lineage-specific monoclonal antibodies (MoAbs) were separated into three populations based on the level of c-kit expression, c-kit(high), c-kit(low), and c-kit-. The majority of colony-forming cells from normal mice were in c-kit(high) population, whereas most of the progenitors from 5-FU-treated mice were in the c-kit(low) population. Optimal colony formation from c-kit(low) cells from 5-FU-treated mice required the interactions of at least two factors among interleukin-3 (IL-3), IL-11 and steel factor (SF) whereas colony formation from c-kit(high) cells of normal mice was supported well by IL-3 alone. Blast cells that were derived from 5-day culture of c-kit(low) post 5-FU cells were c-kit(high). These observations suggest that the primitive hematopoietic progenitors in cell cycle dormancy are c-kit(low) whereas actively cell cycling maturer progenitors are c-kit(high). Mature cells, with the exception of mast cells, derived from secondary culture of the c-kit(high) blast cells expressed little, if any, c-kit. These results are consistent with a model in which c-kit expression progresses from low levels on primitive, dormant multipotent progenitors to high levels on later, actively cycling progenitors, and finally, decreases to very low or undetectable levels on most mature blood cells, with the exception of mast cells.
منابع مشابه
Modulation of murine embryonic stem cell-derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes.
Cdx1, Cdx2, and Cdx4 comprise the caudal-like Cdx gene family in mammals, whose homologues regulate hematopoietic development in zebrafish. Previously, we reported that overexpression of Cdx4 enhances hematopoietic potential from murine embryonic stem cells (ESCs). Here we compare the effect of ectopic Cdx1, Cdx2, and Cdx4 on the differentiation of murine ESC-derived hematopoietic progenitors. ...
متن کاملTransforming growth factor-beta regulates c-kit message stability and cell-surface protein expression in hematopoietic progenitors.
The cell-surface receptor c-kit and its cognate ligand stem-cell factor (SCF) or steel factor (SLF) are important for the maintenance of hematopoiesis both in vitro and in vivo. Transforming growth factor-beta (TGF-beta) has been shown to be a potent inhibitor of SLF-mediated synergistic growth of murine Lin-Sca-1+ progenitor cells, as well as more committed progenitors. In the present study, w...
متن کاملThe endothelial antigen ESAM marks primitive hematopoietic progenitors throughout life in mice.
Although recent advances have enabled hematopoietic stem cells (HSCs) to be enriched to near purity, more information about their characteristics will improve our understanding of their development and stage-related functions. Here, using microarray technology, we identified endothelial cell-selective adhesion molecule (ESAM) as a novel marker for murine HSCs in fetal liver. Esam was expressed ...
متن کاملBone morphogenetic protein 4 modulates c-Kit expression and differentiation potential in murine embryonic aorta-gonad-mesonephros haematopoiesis in vitro
The transforming growth factor-beta-related factor bone morphogenetic protein 4 (BMP4) is expressed in the human embryonic aorta-gonad-mesonephros (AGM) coincident with the emergence of haematopoietic cells and influences postnatal mammalian haematopoietic stem cells in vitro. To investigate the role of BMP4 in mammalian embryonic haematopoiesis, cells were isolated from murine AGM and two popu...
متن کاملEFFECTS OF ENVIRONMENTAL pH ON THE PRODUCTION OF HEMATOPOIETIC GROWTH FACTORS
Cellular and tissue activities highly depend on environmental pH. Murine lung tissue, when cultured properly in-vitro, is a potent producer of hematopoietic growth factors. We have studied the effect of pH on the production of hematopoietic growth factors and protein synthesis by the murine lung in-vitro. Various concentrations of NaHC03 were used to adjust the pH of the culture medium unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 82 8 شماره
صفحات -
تاریخ انتشار 1993